Learning-based Human Fall Detection using RGB-D cameras

نویسندگان

  • Szu-Hao Huang
  • Ying-Cheng Pan
چکیده

Automatic detection of human fall events is a challenging but important function of the real-time surveillance system. The goal of the proposed system is to develop a frame-by-frame fall detection system based on real-time RGB-D camera devices. The proposed system is composed of a complex off-line learning stage which combines several novel machine learning techniques and a series of on-line detection processes. A background subtraction method based on iterative normalized-cut segmentation algorithm is proposed to identify the pixel-wise human regions rapidly. The silhouettes are extracted to measure the pose similarity between different samples. Manifold learning algorithm reduces the feature dimensions and several discriminant analysis techniques are applied to model the final human fall detector. The experimental database contains 65 color video and corresponding depth maps. The experimental results based on a leave-one-out cross-validation testing show that our proposed system can detect the fall events effectively and efficiently.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fall Detection System based on the Type II Fuzzy Logic and Multi-Objective PSO Algorithm

The Elderly health is an important and noticeable issue; since these people are priceless resources of experience in the society. Elderly adults are more likely to be severely injured or to die following falls. Hence, fast detection of such incidents may even lead to saving the life of the injured person. Several techniques have been proposed lately for the fall detection of people, mostly cate...

متن کامل

RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments

RGB-D cameras (such as the Microsoft Kinect) are novel sensing systems that capture RGB images along with per-pixel depth information. In this paper we investigate how such cameras can be used for building dense 3D maps of indoor environments. Such maps have applications in robot navigation, manipulation, semantic mapping, and telepresence. We present RGB-D Mapping, a full 3D mapping system tha...

متن کامل

Driver Drowsiness Detection by Identification of Yawning and Eye Closure

Today most accidents are caused by drivers’ fatigue, drowsiness and losing attention on the road ahead. In this paper, a system is introduced, using RGB-D cameras to automatically identify drowsiness and give warning. In this system two important modules have been utilized simultaneously to identify the state of driver’s mouth and eyes for detecting drowsiness. At first, using the depth informa...

متن کامل

RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments

RGB-D cameras are novel sensing systems that capture RGB images along with per-pixel depth information. RGB-D cameras rely on either structured light patterns combined with stereo sensing [6,10] or time-of-flight laser sensing [1] to generate depth estimates that can be associated with RGB pixels. Very soon, small, high-quality RGB-D cameras developed for computer gaming and home entertainment ...

متن کامل

Learning to Detect and Track People in RGBD Data

Introduction People detection and tracking is an important and fundamental component for many robots, interactive systems and intelligent vehicles. Previous works have used cameras and 2D and 3D range finders for this task. In this paper, we present a 3D people detection and tracking approach using RGB-D data. Given the richness of the data, we learn target appearance models for the purpose of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013